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Nonequilibrium time evolution in quantum field theory
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The time development of equal-time correlation functions in quantum mechanics and quantum field theory
is described by an exact evolution equation for generating functionals. This permits a comparison between
classical and quantum evolution in nonequilibrium systems.@S1063-651X~97!05909-6#
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In a statistical description of nature only expectation v
ues or correlations are observable. The dynamical laws
scribe how a given~complete! set of correlation functions a
some initial timet0 has evolved at some later timet. In a
very general context this constitutes a differential evolut
equation for the correlation functions or their generat
functionals. Different dynamical laws, i.e., the difference b
tween a classical and a quantum description, manifest th
selves only in different evolution equations. For quantu
mechanics of a few degrees of freedom we are accustome
using the Schro¨dinger equation for pure states and to eva
ate time-dependent expectation values in an ensemble s
fied by a density matrix. The classical counterpart is Ne
ton’s equations with the ensemble described by a probab
distribution for initial values. For many degrees of freedom
more direct formulation of the dynamics in terms of an ev
lution equation for generating functionals of correlati
functions may be advantageous. Then one only deals
the relevant observable information and may avoid ad
tional complication in intermediate steps of their compu
tion. For classical equations of motion such an evolut
equation has been established recently@1#. It is the purpose
of this work to develop the counterpart for quantum mech
ics and quantum field theory.

The resulting evolution equation in quantum field theo
is a functional differential equation. Its practical use depe
on the ability to find realistic truncations for the time
dependent effective action—the generating functional for
1PI Green’s functions. Nevertheless, already at the pre
formal stage a comparison between classical and quan
evolution equations sheds some light on current dynam
simulations of nonequilibrium quantum field theory pro
lems within a classical approximation for the field equatio
It also provides a systematic framework to compute quan
corrections to a classical evolution, as relevant, for exam
for inflationary periods in early cosmology.

Consider a system with an arbitrary number of degree
freedom described by conjugate operatorsQi ,Pi ,i
51, . . . ,n, @Qi ,Pi #5id i j , @Qi ,Qj #5@Pi ,Pj #50(\[1).
The Hamiltonian is given by

H5
1

2m
P21V@Q#, ~1!

whereP25Pi Pi is a scalar product~summation of repeated
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indices is always implied! and V@Q#5V(Q1•••Qn). ~Sys-
tems with different massesmi can be brought to this form by
simultaneous rescaling ofQi andPi—in fact, we could also
use a scaling withm51. Our formalism can be generalize
for arbitrary H@P,Q# but we restrict the discussion here
the most common form of quadratic in the momenta.! In the
Heisenberg picture the operatorsQ and P depend on time
according to

Q̇i5
1

m
Pi , Ṗi52Vi@Q#. ~2!

~We use a notationVi5]V/]Qi ,Vi j 5]2V/]Qi]Qj , etc.!
Let us now define the generating functional

Z@ j ,h,t#5Tr~ejQ~ t !1hP~ t !r! ~3!

wherer is the density matrix which is time independent
the Heisenberg picture. It is a function~or functional for
n→`) of the time-independent sourcesj i andhi . The coef-
ficients of its Taylor expansion

Z@ j ,h,t#5 (
k50

`

(
l 50

`
1

k! l !
zq1•••qk ,r 1•••r l

~k,l ! ~ t !

3 j q1
••• j qk

hr 1
•••hr l

~4!

are time-dependent symmetrized expectation values of
relation functions. For a one-component example (n51),

z~k,l !~ t !5^~QkPl !s~ t !&5Tr$„Qk~ t !Pl~ t !…sr%, ~5!

the symmetrized ordering ( )s stands for an equally weighte
sum over all (k1 l )!/k! l ! possibilities to form different
chains ofk operatorsQ and l operatorsP, i.e.,

~Q2P2!s5
1

6
~Q2P21QP2Q1P2Q21PQ2P1QPQP

1PQPQ!. ~6!

The generalization to arbitraryn is obvious. Knowledge of
Z@ j ,h,t# contains complete information about the syste
Macroscopic quantities and thermodynamic functions can
expressed in terms of correlation functions@2#.
2687 © 1997 The American Physical Society
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The time dependence ofZ obeys the evolution equatio
(] tZ is the time derivative at fixedj andh)

] tZ5 iTr~@H,ejQ1hP#r!. ~7!

Our aim is to express the right-hand side in terms ofZ and its
derivatives with respect toj andh. In order to deal with the
problem of ordering the noncommuting operators we use

i @H,ejQ1hP#5
1

m
j i

]

]hi
ejQ1hP1 iVF ]

]b G@ebQ,ejQ1hP#ub50

~8!

and evaluate the commutator with the Campbell-Bak
Hausdorff formula

@ebQ,ejQ1hP#5~e~ i /2!bh2e2~ i /2!bh!e~b1 j !Q1hP. ~9!

For each of the two contributions on the right-hand side, o
can express]/]b by an appropriate combination of]/] j and
h. This leads to

i @V@Q#,ejQ1hP#5 i S VF ]

] j
1

i

2
hG2VF ]

] j
2

i

2
hG DejQ1hP

~10!

and Eqs.~8! and ~10! can now be inserted in the trace~7!.
Our final result is a linear partial differential equation for t
evolution ofZ with a simple structure:

] tZ5L~Z!Z,

L~Z!5
1

m
j i

]

]hi
1 i S VF ]

] j
1

i

2
hG2VF ]

] j
2

i

2
hG D . ~11!

For a comparison with the time evolution ofZ in classical
statistics@1# we expandV in powers ofh

iVF ]

] j
1

i

2
hG2 iVF ]

] j
2

i

2
hG

52ViF ]

] j Ghi1
1

24
Vi jkF ]

] j Ghihjhk

2
1

1920
Vi jklmF ]

] j Ghihjhkhlhm1•••. ~12!

The first term in this expansion reproduces the classical e
lution equation. This leads to the important observation t
for linear equations of motion (H quadratic inQ and P)
there is no difference in the time evolution of correlati
functions between quantum statistics and classical statis
The higher order terms appearing for nonlinear equation
motion can be viewed as quantum corrections to the class
evolution. Restoring\, they involve powers\2, \4, etc. For
V containing only up to quartic terms the quantum correct
DLQM

(Z) reads explicitly (Vi jk[Vi jk@0#)
r-

e

o-
t

s.
of
al

n

L~Z!5Lcl
~Z!1DLQM

~Z! , Lcl
~Z!5

1

m
j i

]

]hi
2hiViF ]

] j G ,
DLQM

~Z! 5
1

24
Vi jkhihjhk1

1

24
Vi jkl hihjhk

]

] j l
. ~13!

It may be instructive to consider two examples. We fi
take a single anharmonic oscillator with

V~Q!5
1

2
mv2S Q21

4

3
A2mvgQ312mvdQ4D . ~14!

In terms of a complex source

J5
1

A2mv
~ j 1 imvh!, ~15!

which is conjugate to the creation operatora† of the har-
monic oscillator, the evolution equation reads

] tZ52 ivH J*
]

]J*
2J

]

]J
1~J* 2J!FgS ]

]J*
1

]

]JD 2

1dS ]

]J*
1

]

]JD 3G1
g

12
~J* 2J!3

1
d

4
~J* 2J!3S ]

]J*
1

]

]JD J Z. ~16!

In our picture the state of the system at a given timet is
described byZ@J,t#. For the harmonic oscillator (g5d50)
the stationary states or fixed points ofZ (] tZ50) are ex-
actly those for which all terms inZ involve an equal numbe
of powers ofJ andJ* . They correspond to incoherent mix
tures of eigenstates of the number operatora†a or energy
eigenstates. It is intriguing that due to the equivalence of
quantum and classical evolution for linear equations of m
tion the quantum mechanical energy eigenstates can als
viewed as classically stationary probability distributions f
commuting coordinate and momentum variables. Forg,d
Þ0 these particular states are not stationary any more.
know, nevertheless, that Eq.~16! must admit an infinite num-
ber of fixed point solutions which correspond exactly to
coherent mixtures of energy eigenstates of the anharm
oscillator. This follows from the general observation that E
~7! is equivalent to

] tZ52 iTr~ejQ1hP@H,r#! ~17!

andH(t)5H(t0). Everyr which commutes withH defines
a stationary state. An important qualitative difference b
tween the quantum and classical evolution equation can
easily seen if we neglectd. The quantum mechanical evolu
tion equation for lnZ contains a ‘‘correction’’ term
(g/12)(J* 2J)3 which acts as an additional consta
‘‘force’’ on the connected correlation function forP3, i.e.,

D] t^P3&c5 1
12vg(2mv)3/2. A cubic potential is not bounded

from below. The local minimum at the origin is separat
from the unstable part by a barrier. A classically stable init
ensemble with all energies below the barrier becomes
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stable in quantum mechanics due to tunneling, as refle
by the additional ‘‘force.’’ The essential features of this e
fect are not changed if we restore stability by a small posit
nonzerod. Once reexpressed in terms of real sourcesj and
h, Eq. ~16! is a real partial linear differential equation for
function of three variablesZ( j ,h,t). A linear combination of
two solutions is again a solution. A numerical solution of th
equation contains at once the information about the time e
lution of all expectation values of arbitrary powers ofQ and
P. In particular, it seems interesting to investigate the o
come for classically chaotic systems.

Our second example is a linear chain of oscillators~with
massm scaled to one andd51)

H5(
i

H 1

2
Pi

21
1

2
m2Qi

21
1

3
na2d/2Qi

31
1

8
la2dQi

4

1
1

2a2 ~Qi 112Qi !
2J . ~18!

Herea is the distance between two oscillators on the ch
and we take periodic boundary conditions with a fixed len
V5( i 51

n a. The evolution equation reads

] tZ5(
i

H j i

]

]hi
1

1

a2hi S ]

] j i 11
22

]

] j i
1

]

] j i 21
D

2hiFm2
]

] j i
1na2d/2S ]

] j i
D 2

1
1

2
la2dS ]

] j i
D 3G

1
1

12
na2d/2hi

31
1

8
la2dhi

3 ]

] j i
J Z. ~19!

Again, the last two terms are the quantum corrections.
The transition to a field theory can be made by taking

limit a→0 while keeping a nonzero ‘‘volume’’V. With
the replacements a2d/2Qi→w̃(x), a2d/2Pi→p̃(x),ad( i

→*ddx, a2(d/211)(Qi 112Qi)→]w̃ /]xi—we generalize
here to an arbitrary dimensiond—the Hamiltonian~18! be-
comes

H5E ddxH 1

2
p̃ 2~x!1

1

2
] i w̃~x!] i w̃~x!1U„w̃~x!…J ,

U„w̃~x!…5
1

2
m 2 w̃2~x!1

1

3
nw̃ 3~x!1

1

8
lw̃4~x!.

~20!
ed

e

o-

t-

n
h

e

This is the Hamiltonian of a relativistic scalar field theo

with field equations p̃(x)5 ẇ̃(x), ṗ̃5 ẅ̃5Dw̃2]U/]w̃ .
Since also the commutation relation@a2dd i j→d(x2x8)#,

@ w̃~x!,p̃~x8!#5 id~x2x8!, ~21!

is covariant under Lorentz transformations, our system
scribes a Lorentz-invariant quantum field theory. HereZ
becomes a functional of the sourcesj w(x), j p(x) which are
related to the sources in the discrete version bya2d/2j i
→ j w(x), a2d/2hi→ j p(x), a2d/2(]/] j i)→d/d j w(x) and
a2d/2(]/]hi)→d/d j p(x), i.e., Z5Tr$exp„*ddx@ j w(x)w̃(x)
1 j p(x)p̃(x)] …r%. We finally arrive at the time evolution
equation for a scalar quantum field theory

] tZ@ j w , j p ,t#5E ddxH j w~x!
d

d j p~x!
1 j p~x!D

d

d j w~x!

1 iU S d

d j w~x!
1

i

2
j p~x! D

2 iU S d

d j w~x!
2

i

2
j p~x! D J Z@ j w , j p ,t#.

~22!

Its generalization to several scalar fieldsw̃a(x) is
straightforward—withp̃ 2→p̃ap̃a , ] i w̃] i w̃→] i w̃a] i w̃a in H

~12! and the commutation relation@ w̃a(x),p̃b(x8)#
5 id(x2x8)dab we only have to replace j w(d/d j p)
→ j wa

(d/d j pa
), j pD(d/d j w)→ j pa

D(d/d j fa
) in Eq. ~22!. All

symmetries ofU(w̃) are preserved by the evolution equatio
in the sense that an initially symmetric state remains so
later time. This does not preclude spontaneous symm
breaking in the course of the evolution—it may be detec
by adding a small symmetry breaking linear term inU or by
starting with a slightly asymmetric initial state.

Equation~22! is a functional differential equation and it
approximate solution has to proceed by some truncation.
this purpose it seems an advantage to switch to the gen
ing functional for the 1PI Green’s functions
G@w,p,t#52 lnZ@ j,t#1*ddx@ jw(x)w(x)1jp(x)p(x)#, where
w(x)5] lnZ/djw(x), p(x)5d lnZ/djp(x). The derivation of the
evolution equation for the effective actionG proceeds as in
Ref. @1# and here we only give the result for the Hamiltonia
~20! with ] tG a time derivative at fixedw andp:
] tG52~Lcl
~G!1DLQM

~G! !G,

Lcl
~G!5E ddxH p~x!

d

dw~x!
1w~x!~D2m2!

d

dp~x!
2F n@w2~x!1Gww~x,x!#1

l

2S w3~x!13w~x!Gww~x,x!

2E dx1dx2dx3Gwg1
~x,x1!Gwg2

~x,x2!Gwg3
~x,x3!

d3G

dŵg1
~x1!dŵg2

~x2!dŵg3
~x3!D G d

dp~x!J ,

DLQM
~G!G5E ddxH n

12S dG

dp~x! D
3

1
l

8
w~x!S dG

dp~x! D
3J . ~23!
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Here Ggg8(x,x8)5^ŵ̃g(x) ŵ̃g8(x8)& j2 ŵ̃g(x) ŵ̃g8(x8) is the
propagator in the presence of sources whereŵg , g5w,p is
shorthand for (w,p). The propagator can in turn be ex
pressed by the inverse of the matrix of second functio
derivatives of G, i.e., Ggg8(x,x8)5(G (2))gg8

21 (x,x8). Note
that G (2) has indices (x,g) and (x8,g8) with g5(w,p). We
observe thatLcl

(G) plays the role of the classical Liouville

operator, withwn replaced bŷ w̃n&. The differencê w̃n&2wn

is accounted for by the terms involvingG. They induce a
dependence ofL on G and turn the evolution equation non
linear. The quantum corrections are all proportional
(dG/dp)3.

The evolution equation~23! has a fixed pointG* (b) cor-
responding to thermal equilibrium wherer5Z0

21e2bH,
Z05Tre2bH in Eq. ~3!. This can be computed by functiona
integral methods@3#. It is far from obvious, however, if and
in what sense the solutions of Eq.~23! with nonequilibrium
initial conditions approach this fixed point. A uniform ap
proach is not possible due to the existence of infinitely ma
25
-

a

l

y

other fixed points which correspond to incoherent mixtu
of eigenstates ofH. At best, the equilibrium fixed point can
be approached if we restrict the discussion to correlat
functions of suitably averaged fields~coarse graining! or to
other subsystems. Thermalization can also be achieved
coupling to an environment, thus introducing a stochas
element in the equations of motion. A truncation
G@w,p,t# may destroy the existence of the infinitely man
fixed points. Information about higher 1PI correlations
their precise momentum dependence is omitted in this w
It is conceivable that truncated equations have a more
form approach to the fixed point than the exact ones. G
truncations should at least retain those terms that play
important role in the computation ofG* (b) by the solution
of renormalization group equations in dependence on
coarse graining scale@4#. A better understanding of the im
pact of truncations will be crucial for the practical use of t
present formalism.

This work was performed in part at CERN, Geneva, Sw
zerland.
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