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Nonequilibrium time evolution in quantum field theory
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The time development of equal-time correlation functions in quantum mechanics and quantum field theory
is described by an exact evolution equation for generating functionals. This permits a comparison between
classical and quantum evolution in nonequilibrium systi84063-651X97)05909-9
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In a statistical description of nature only expectation val-indices is always impliegdand V[Q]=V(Q;- - - Q). (Sys-
ues or correlations are observable. The dynamical laws deems with different masses; can be brought to this form by
scribe how a givericomplete set of correlation functions at simultaneous rescaling @; and P,—in fact, we could also
some initial timet, has evolved at some later tinteln a  use a scaling wittm=1. Our formalism can be generalized
very general context this constitutes a differential evolutionfor arbitrary H[ P,Q] but we restrict the discussion here to
equation for the correlation functions or their generatingthe most common form of quadratic in the momenta.the
functionals. Different dynamical laws, i.e., the difference be-Heisenberg picture the operata@s and P depend on time
tween a classical and a quantum description, manifest thenaccording to
selves only in different evolution equations. For quantum
mechanics of a few degrees of freedom we are accustomed to 1 _
using the Schidinger equation for pure states and to evalu- Qi=—=—P;, P;=—V|][Q]. 2
ate time-dependent expectation values in an ensemble speci- m
fied by a density matrix. The classical counterpart is New-
ton’s equations with the ensemble described by a probabilityWe use a notationV;=aV/JQ;,V;;=d°V/iQ;dQ;, etc)
distribution for initial values. For many degrees of freedom al-€et us now define the generating functional
more direct formulation of the dynamics in terms of an evo-
lution equation for generating functionals of correlation Z[j,h,t]=Tr(elQWTNP® ) ®)
functions may be advantageous. Then one only deals with

the relevant observable information and may avoid addiyhere ), is the density matrix which is time independent in
tional complication in intermediate steps of their computa-,o Heisenberg picture. It is a functidor functional for

tion. For classical equations of motion such an evolutiorh_mo) of the time-independent sourcgsandh, . The coef-
equation has been established receftly It is the purpose ficients of its Taylor expansion v

of this work to develop the counterpart for quantum mechan-
ics and quantum field theory.

[’

The resulting evolution equation in quantum field theory ZAing=3 iz“‘") n
is a functional differential equation. Its practical use depends U &0 S0 KT T ke
on the ability to find realistic truncations for the time- ) )
dependent effective action—the generating functional for the Xjgy - Tae- Ny, 4

1PI1 Green's functions. Nevertheless, already at the present

formal stage a comparison between classical and quantugye time-dependent symmetrized expectation values of cor-
evolution equations sheds some light on current dynamicgl|ation functions. For a one-component exampie- ()
simulations of nonequilibrium quantum field theory prob-

lems within a classical approximation for the field equations.

It also provides a systempeﬂic framework to computeqquantum 24O =((QPH{(1) =THQ WP (s}, (6

corrections to a classical evolution, as relevant, for example,

for inflationary periods in early cosmology. the symmetrized ordering ( stands for an equally weighted
Consider a system with an arbitrary number of degrees ofum over all k+1)!/k!l! possibilities to form different

freedom described by conjugate operato®;,P;,i  chains ofk operatorsQ andl operatorsP, i.e.,

_?hli H . vn!It [QI !PI]:I 5”6 [QI iQJ]:[PI ij]:O(hzl)

miltonian is given
C e B e (Q2P2)3=%(Q2P2+QP2Q+P2Q2+PQ2P+QPQP

1
H=5—P?+V[Q], D +PQPQ. (6)

whereP?=P;P; is a scalar produdisummation of repeated The generalization to arbitrany is obvious. Knowledge of
Z[j,h,t] contains complete information about the system.
Macroscopic quantities and thermodynamic functions can be
*Electronic address: C.Wetterich@thphys.uni-heidelberg.de expressed in terms of correlation function$2].
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The time dependence & obeys the evolution equation . @ @ o 1.9 d
(&,Z is the time derivative at fixe§l andh) LA=LP+ALG, L =mligp Vi ail’
|
aHZ=iTr([H,e°*"P]p). ()

Ac<z>=iv- hih.h +ivA- iy (13)
QM 24 ijk itk 24 ijkltHittj k&jl-

Our aim is to express the right-hand side in termZ aind its _ _ _ .
derivatives with respect tpandh. In order to deal with the It may be instructive to consider two examples. We first
problem of ordering the noncommuting operators we use take a single anharmonic oscillator with

1%

1 4
7 [efQ, el Py, V(Q)=§mw2 Q%+ 5\/2mw7Q3+2mw5Q4 . (149

)

) 1 J .
i[H,eJQ”‘P]: EjimejQJth-HV
i

In terms of a complex source

and evaluate the commutator with the Campbell-Baker-
Hausdorff formula J=

1
j timwh), 15
which is conjugate to the creation opera#r of the har-

For each of the two contributions on the right-hand side, ondnonic oscillator, the evolution equation reads
can expresg/dB by an appropriate combination éfdj and

[e8Q,elQ+NP] = (g(i/2Bh _ g=(i12)BM)g(B+1)1Q+NP (g

. 9 9 2
h. This leads to = * S * _ -4
Mz Iw[J PN JOU+(J J) ’y(a\]*-l-ﬁ\])
i[V[Q],eR*hP =|(V —+=h —V{—.——hDeJQMP 7.2 Y333
[VIQ] ] 52 52 +8| o5+ 23] |+ 30—
(10)
+ i J*—J)3 o 2 z 16
and Egs.(8) and (10) can now be inserted in the tracé). 4( ) aJ* 4 ’ (16)
Our final result is a linear partial differential equation for the
evolution ofZ with a simple structure: In our picture the state of the system at a given timis
described byZ[ J,t]. For the harmonic oscillatory= §=0)
WZ=L"2Z, the stationary states or fixed points of (9,Z2=0) are ex-

actly those for which all terms i# involve an equal number
of powers ofJ andJ*. They correspond to incoherent mix-

)_ (11  tures of eigenstates of the number operatba or energy
eigenstates. It is intriguing that due to the equivalence of the
quantum and classical evolution for linear equations of mo-

For a comparison with the time evolution Bfin classical tion the quantum mechanical energy eigenstates can also be
statistics[1] we expandV in powers ofh viewed as classically stationary probability distributions for
commuting coordinate and momentum variables. Ko

P
——=h

1. 4 d
(2) = i
£ (V dj 2

_ i
E]iahi-i—l ﬂ‘l‘ih}—v

g i 9 i #0 these particular states are not stationary any more. We
Y% i + §h} —iVv i >h know, nevertheless, that E@L6) must admit an infinite num-
ber of fixed point solutions which correspond exactly to in-
coherent mixtures of energy eigenstates of the anharmonic
_ —V[i he & iv__ [i}h-h-h oscillator. This follows from the general observation that Eq.
aj| 1 24 K gj | Tk (7) is equivalent to
1 J _ jQ+hP
= TazoYam| 35 [Nt (12) i Z=—1Tr(e™ " H.p]) (17

andH(t)=H(ty). Every p which commutes wittH defines
The first term in this expansion reproduces the classical evg® Stationary state. An important qualitative difference be-
lution equation. This leads to the important observation thafween the quantum and classical evolution equation can be
for linear equations of motionH quadratic inQ and P) gasny seen if we negled. The .quantum mechgmcal evolu-
there is no difference in the time evolution of correlationtion equation for IZ contains a “correction” term
functions between quantum statistics and classical statisticéy/12)(3* —J)° which acts as an additional constant
The higher order terms appearing for nonlinear equations offorce” on the connected correlation function fd?, i.e.,
motion can be viewed as quantum corrections to the classical 9,( P%).= 0 y(2mw)*2 A cubic potential is not bounded
evolution. Restoring;, they involve powerdi?, 74, etc. For  from below. The local minimum at the origin is separated
V containing only up to quartic terms the quantum correctionfrom the unstable part by a barrier. A classically stable initial
A,Cg,\),l reads explicitly ¥/;;=V;;[0]) ensemble with all energies below the barrier becomes un-
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stable in quantum mechanics due to tunneling, as reflectetihis is the Hamiltonian of a relativistic scalar field theory
:)y tthe addtltlcr)]nal fgr_cf:e. Th(i essing‘_altlltfe;tures 01;|th|s _(te_f— with field equations 7~r(x)=5(x), T=¢o=Ag—dUldg.
ectare not cnanged It we restore stabiiity by a sSmafl posiliVesjnce also the commutation relatipa™ 96— 8(x—x")1,
nonzerod. Once reexpressed in terms of real sourcesd

h, Eq. (16) is a real partial linear differential equation for a
function of three variablez(j,h,t). A linear combination of
two solutions is again a solution. A numerical solution of this g2 iant under Lorentz transformations, our system de-
equation contains at once the information about the time evo:

) . . scribes a Lorentz-invariant quantum field theory. Hé&re
lution of all expectation values of arbitrary powers@fand b f ional of th ) ; hich
P. In particular, it seems interesting to investigate the out- ecomes a functional o .t € sour_q;;a(x),l,,(x)_w Ich are
: g . related to the sources in the discrete version ay"?j;
come for classically chaotic systems.

; S —d/2 Y S/ Si
Our second example is a linear chain of oscillatevith —:dez(x), a ™h, ] J”(X)f a "(alaj) 5é5] _‘P(X) Nand
+j.(xX)m(X)])p}. We finally arrive at the time evolution

1 1 1 1 i i
H= 2 [Epi2+ EMZQiZJF §va‘d’2Qf‘+ gka_de equation for a scalar quantum field theory
1

[o(x), m(x")]=i8(x—x"), (22)

o o
aZ[] !jﬂ'vt]: ddx(j (X)'—+j7T(X)A'—
+%2<Qi+1—Qi)2 : (18) e f RS 8 (X)

Herea is the distance between two oscillators on the chain +iU
and we take periodic boundary conditions with a fixed length

Q=3 ,a. The evolution equation reads

L_’_i__ )

"U(m—gmmﬂZ[I(P,,W,t]_

az—E[‘ (9+1h J A ) (22)
R R e T e T T
9 a\%2 1 g\3 Its generalization to several scalar fieldg,(x) is
—hi| u?—+va 9 — —za 9 — iahtf dWith 277 9B i and o i
dji i 2 aj; straightforward—withr *— m,, , 3930 — 3i@adi ¢a in H
1 1 (12 and the commutation relation] ¢,(X),mp(X")]
+ = pa92h34 _)\athi]Z. (19) =i8(x—x")d,, we only have to replacej,(d/6j,)
12 '8 '] —,(81817), 1 xA (18] )= A(815]4) in Eq.(22). Al
Again, the last two terms are the quantum corrections. ~ Symmetries olJ(¢) are preserved by the evolution equation

The transition to a field theory can be made by taking then the sense that an initially symmetric state remains so at a
limit a—0 while keeping a nonzero “volume’. With later time. This does not preclude spontaneous symmetry
the replacements a~ %20, —3(x), a~¥2P,—7(x),ads, breaking in the course of the evolution—it may be detected

I ’ I ] ]

Cfdi, a-@2r0(Q . Q) delix—we generalize by adding a small symmetry breaking linear terniror by

. t ; N starting with a slightly asymmetric initial state.
Qgrrr?etso an arbitrary dimensiah—the Hamiltonian(18) be- Equation(22) is a functional differential equation and its

approximate solution has to proceed by some truncation. For
1. 1 _ _ _ f[his purpose it seems an advantage to switch to the generat-
H ZJ ddx(zﬂ 2(x)+ Eﬁiw(x)ﬁiQD(XH U(e(X)t, ing  functional for the 1Pl Green's functions,
Ile,mt]=—InZjt]+/dNj e+ ()],  where
_ 1 _ 1 _ 1 _ @(X)=0dInZ/ 6] ,(X), w(X) = 8InZ/ 5] ,(X). The derivation of the
U(p(x))= Sh 2 90%(x)+ 3v¢ 3(x)+ g)\(p4(x). evolution equation for the effective actidh proceeds as in
Ref.[1] and here we only give the result for the Hamiltonian
(20 (20) with 4,I" a time derivative at fixed and :

ol =— (LG +ALSWT,

A
V[@%(X) + G yu(x,X) ]+ E( @3 (X)+30(X)Gy(X,X)

1)
om(xX) |’

A0 [ g v< R\ )3 A ( or )3
Loul'= f |12 5700 T 82\ Sa0) |- @3

S 1)
= ddX[ X500 PO A BTG

(X,X2)G

8T
—fdxldxzdx3GWl(x,xl)G (X,X3)—=

89.,(X1) 89,,(X2) 5¢,,.(X3)

Y2 ¢Y3
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Here G, (x,x')= B VDX — o (o (X') is the othgr fixed points which corresponq' to incqherent .mixtures
7,[7 ( . ﬂ: (e, ey (f )i~ e )?7 ( Z . of eigenstates off. At best, the equilibrium fixed point can
propagator in the presence of Sources Whﬁ{e Y=eTIS  pe approached if we restrict the discussion to correlation
shorthand for ,). The propagator can in turn be ex- fnctions of suitably averaged fieldsoarse grainingor to
pressed by the inverse of the matrix of second functionapther subsystems. Thermalization can also be achieved by a
derivatives of I, i.e., G,/ (x,x")= (T ))W(X,X')- Note  coupling to an environment, thus introducing a stochastic
thatT'® has indicesX,y) and (’,y') with y=(¢,7). We  element in the equations of motion. A truncation of
observe that/:g) plays the role of the classical Liouville I'[¢,w,t] may destroy the existence of the infinitely many
operator, withe" replaced by(g"). The difference ") — ¢" fixed points. Information about higher 1Pl correlations or
is accounted for by the terms involving. They induce a thglr precise momentum dependence_ls omitted in this way.
dependence of on T and turn the evolution equation non- It is conceivable that truncated equations have a more uni-
linear. The quantum corrections are all proportional tofo'M @pproach to the fixed point than the exact ones. Good
(871 67)3. truncations should at least retain those terms that play an
The evolution equatiof23) has a fixed point, (8) cor- important ro!e in the computation df*(ﬁ) by the solution
responding to thermal equilibrium wherp=2Zg e~ 2" of renormalization group equations in dependence on a
Zo=Tre "M in Eq. (3). This can be computed byofunctional coarse graining sca[gﬂf]. A bettgr understand|r_1g of the im-
in(iegral method$3;] It. is far from obvious. however. if and pact of truncations will be crucial for the practical use of the

in what sense the solutions of E@3) with nonequilibrium present formalism.
initial conditions approach this fixed point. A uniform ap-  This work was performed in part at CERN, Geneva, Swit-
proach is not possible due to the existence of infinitely manyerland.
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